59 research outputs found

    Asteroid’s name after Vladis Vujnović

    Get PDF
    According to the International Astronomical Union, Asteroid 182590 got the name after Professor Vladis Vujnović

    SEA-SURFACE TEMPERATURE EFFECTS ON 3D BURA FLOW

    Get PDF
    A nonhydrostatic numerical model with a higher order turbulence closure scheme is used to study the effect of the sea surface temperature (SST) on the nonlinear flow over a mountain in the presence of rotation. The low-level jet that develops on both flanks of the mountain is intensified by the Coriolis effect on the northern flank. Shooting flow develops down the slope ending over the sea while resembling a hydraulic jump. This is considered as bura like flow. Three different cases are addressed, the control run and two cases with the SST 10K colder, and 10K warmer than the control run. The maximum wind speeds that occur are around two times higher than the background wind speeds. Varying the SST induces changes to the flow that affect the position of the hydraulic jump and the extent and intensity of low-level jets that form on both flanks of the mountain. A hydraulic jump is modulated by orographicaly generated eddies

    A CURVATURE EFFECT ON THE CRITICAL RICHARDSON NUMBER

    Get PDF
    Transitions from laminar to turbulent flow associated with a critical level in the stratified shear flow are related to the critical (gradient) Richardson number, Ric, the minimum value of which is Ric ≈ 1/4. Based on the linear theory and a modified Taylor-Goldstein equation, here it is plausibly shown that Ric may slightly vary from this value if the mean wind speed profile contains a small curvature (parameterized here) around the critical level. The modified Ric that depends on the dimensionless curvature α ≡ (U’’ζ/U’) is Ric(α) = (1 + α/2)[α + (1 + α/2)/4]

    Idealizirani vjetar obronka

    Get PDF

    Sergej Sergejevich Zilitinkevich (4.1936 - 2.2021)

    Get PDF
    Sergej Sergejevich Zilitinkevich - In memoriamSergej Sergejevich Zilitinkevich - In memoria

    Internal wave drag in stratified flow over mountains on a beta plane

    Get PDF
    The impact of the variation of the Coriolis parameter f on the drag exerted by internal Rossby-gravity waves on elliptical mountains is evaluated using linear theory, assuming constant wind and static stability and a beta-plane approximation. Previous calculations of inertia-gravity wave drag are thus extended in an attempt to establish a connection with existing studies on planetary wave drag, developed primarily for fluids topped by a rigid lid. It is found that the internal wave drag for zonal westerly flow strongly increases relative to that given by the calculation where f is assumed to be a constant, particularly at high latitudes and for mountains aligned meridionally. Drag increases with mountain width for sufficiently wide mountains, reaching values much larger than those valid in the non-rotating limit. This occurs because the drag receives contributions from a low wavenumber range, controlled by the beta effect, which accounts for the drag amplification found here. This drag amplification is shown to be considerable for idealized analogues of real mountain ranges, such as the Himalayas and the Rocky mountains, and comparable to the barotropic Rossby wave drag addressed in previous studies

    Internal wave drag in stratified flow over mountains on a beta plane

    Get PDF
    The impact of the variation of the Coriolis parameter f on the drag exerted by internal Rossby-gravity waves on elliptical mountains is evaluated using linear theory, assuming constant wind and static stability and a beta-plane approximation. Previous calculations of inertia-gravity wave drag are thus extended in an attempt to establish a connection with existing studies on planetary wave drag, developed primarily for fluids topped by a rigid lid. It is found that the internal wave drag for zonal westerly flow strongly increases relative to that given by the calculation where f is assumed to be a constant, particularly at high latitudes and for mountains aligned meridionally. Drag increases with mountain width for sufficiently wide mountains, reaching values much larger than those valid in the non-rotating limit. This occurs because the drag receives contributions from a low wavenumber range, controlled by the beta effect, which accounts for the drag amplification found here. This drag amplification is shown to be considerable for idealized analogues of real mountain ranges, such as the Himalayas and the Rocky mountains, and comparable to the barotropic Rossby wave drag addressed in previous studies

    KATABATIC FLOW WITH CORIOLIS EFFECT

    Get PDF
    Abstract Katabatic flows on long glaciers in high latitudes experience the Coriolis effect deflecting the flow thus affecting turbulent transports in the boundary layer. Analytically katabatic flows have been best represented by Prandtl model. However, the classic Prandtl model does not take into account the effect of the Coriolis force. It is found that after a straightforward inclusion of this effect, the solution to the model is correct only up to a constant, and does not simultaneously satisfy all boundary conditions. Therefore, a modified analytic Prandtl model is examined. The modified approximate solution agrees with a numerical solution, and qualitatively, with the results of other related studies. Besides a theoretical significance, our approximate analytic solution can be useful for developing a better parameterization in climate models having a poor vertical resolution for such shallow but persistent flows

    KATABATIC FLOW WITH CORIOLIS EFFECT

    Get PDF
    Abstract Katabatic flows on long glaciers in high latitudes experience the Coriolis effect deflecting the flow thus affecting turbulent transports in the boundary layer. Analytically katabatic flows have been best represented by Prandtl model. However, the classic Prandtl model does not take into account the effect of the Coriolis force. It is found that after a straightforward inclusion of this effect, the solution to the model is correct only up to a constant, and does not simultaneously satisfy all boundary conditions. Therefore, a modified analytic Prandtl model is examined. The modified approximate solution agrees with a numerical solution, and qualitatively, with the results of other related studies. Besides a theoretical significance, our approximate analytic solution can be useful for developing a better parameterization in climate models having a poor vertical resolution for such shallow but persistent flows
    corecore